Genetic Dissection of Quantitative Disease Resistance in Maize

Jesse A. Poland1, Chialin Chung1, Randall J. Wisser2, Peter J. Balint-Kurti2, Kristen L. Kump2, Jacqueline M. Benson1, Judith M. Kolkman1, Erik L. Stromberg3

The Maize Diversity Project 1,2,4,5,6,7,8, Rebecca J. Nelson1

1Cornell University, Ithaca, NY
2North Carolina State University, Raleigh, NC
3Virginia Polytechnic Institute and State University, Blacksburg, VA
4Cold Spring Harbor Laboratory, NY
5University of California-Irvine
6USDA-Agricultural Research Service
7University of Missouri, Columbia, MO
8University of Wisconsin, Madison, WI

Presented at Generation Challenge Program Workshop, Plant and Animal Genome, Jan. 12, 2009
Resistant, Susceptible, and shades of gray...

Phenotype

R

Gene-for-gene

S

Specific

General

Interaction

Non-host

Multiple Disease Resistance

Quantitative Resistance
Research Approach: Genetic Platforms

- Selection Mapping
- Nested Association Mapping
- Maize Diversity Panel
- Near-Isogenic Lines

Phenotype

Interaction

R

S

Specific

General

Gene

Quantitative Resistance

Multiple Disease Resistance
Utility of Genetic Platforms

- Selection Mapping
- Nested Association Mapping
- Maize Diversity Panel
- Near-Isogenic Lines

Phenotyping Power

Allelic Diversity

Interaction

Quantitative Resistance

Phenotypic Power

Maize Diversity Panel

Multiple Disease Resistance

R

S

Gene
Utility of Genetic Platforms

- Nested Association Mapping
 - enrichment for resistance alleles
 - breeding material
- Maize Diversity Panel
 - diversity
 - high resolution
- Near-Isogenic Lines
 - uniform background
 - detailed phenotyping

- Selection Mapping
 - power!
 - resolution

Allelic Diversity

Phenotyping Power
Evidence for Multiple Disease Resistance in the Maize Diversity Panel

Phenotypic Evaluations
- SLB: 4 environments
- NLB: 3 environments
- GLS: 3 environments

Analysis:
- Linear Mixed Model
- Covariates:
 - Population Structure (K)
 - Relatedness (Q)
 - Relative maturity (days to anthesis)

<table>
<thead>
<tr>
<th>disease</th>
<th>GLS</th>
<th>NLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLB</td>
<td>***0.61</td>
<td>***0.62</td>
</tr>
<tr>
<td>GLS</td>
<td>-</td>
<td>***0.45</td>
</tr>
</tbody>
</table>

Genetic component of multiple disease resistance

Phenotypic Evaluation: P.Balint-Kurti, J.Kolkman, R.Wisser
Genotyping: The Maize Diversity Project, E.Bucker et al.
Analysis: R.Wisser
Candidate genes for quantitative disease resistance

Genotypes:
~850 genome-wide SNPs

Analysis:
Linear Mixed Model
Covariates: Population Structure (K), Relatedness (Q), and relative maturity (days to anthesis)

Sequence candidate gene from diversity panel (includes 26 NAM parents) and test for association

Analysis: R. Wisser
NESTED ASSOCIATION MAPPING (NAM)

NAM is a QTL mapping strategy that simultaneously exploits the advantages of \textit{linkage analysis} and \textit{association mapping} for high resolution genome scans.

Use sequence information from parents for association analysis

✓ Parental sequence imputed to RILs
Multiple disease resistance in NAM

Diversity Panel

<table>
<thead>
<tr>
<th></th>
<th>NLB</th>
<th>GLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLB</td>
<td>0.62</td>
<td>0.61</td>
</tr>
<tr>
<td>NLB</td>
<td>0.45</td>
<td></td>
</tr>
</tbody>
</table>

mixed model correction for population structure, flowering time

NAM

COVARIATES

<table>
<thead>
<tr>
<th></th>
<th>NLB</th>
<th>GLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>SLB</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>NLB</td>
<td>0.44</td>
</tr>
</tbody>
</table>

w/Population

<table>
<thead>
<tr>
<th></th>
<th>NLB</th>
<th>GLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLB</td>
<td>0.19</td>
<td>0.18</td>
</tr>
<tr>
<td>NLB</td>
<td>0.12</td>
<td></td>
</tr>
</tbody>
</table>

w/ flowering time

<table>
<thead>
<tr>
<th></th>
<th>NLB</th>
<th>GLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLB</td>
<td>0.37</td>
<td>0.28</td>
</tr>
<tr>
<td>NLB</td>
<td></td>
<td>0.24</td>
</tr>
</tbody>
</table>

w/ Population & flowering time

<table>
<thead>
<tr>
<th></th>
<th>NLB</th>
<th>GLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLB</td>
<td>0.18</td>
<td>0.17</td>
</tr>
<tr>
<td>NLB</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>

Position and relative effect of QRL identified in NAM

- B97
- CML103
- CML228
- CML247
- CML277
- CML322
- CML333
- CML52
- CML69
- Hp301
- Il14H
- Ki11
- Ki3
- Ky21
- M162W
- M37W
- Mo17
- Mo18W
- MS71
- NC350
- NC358
- Oh43
- Oh7B
- P39
- Tx303
- Tzi8

Legend:
- Red: SLB
- Blue: NLB
- Green: GLS

Inset graph:
- SLB
- NLB

Numbers 1 to 10 represent different categories or conditions.
Characterizing and Fine-mapping a Quantitative Resistance Loci on Chr. 8

Near Isogenic Lines: DK888/S11 F₇ lines from HIF (heterozygous inbred family)

Further detailed phenotyping possible in NILs (race-testing)

NIL development, evaluation, fine-mapping – C.Chung; NAM evaluation - J.Poland;
Characterizing Resistance Effect in Near Isogenic Lines

Near Isogenic Lines from Tx303 in B73 background

- Conidium
- Appressorium
- Initial infection
- Successful infection
- Infection hyphae

Infection efficiency of* E. turcicum* (Northern Leaf Blight)

- - QTL
- + QTL @ 1.02
- + QTL @ 1.06

Number of hyphae growing into the xylem* (E. turcicum)

- - QTL @ 1.02
- + QTL @ 1.02

+ QTL @ 1.06
Reduce infection efficiency

+ QTL @ 1.02
Reduce fungal growth in xylem
(no effect on infection)

NIL development, evaluation – C. Chung
Moving forward

- Selection Mapping
- Maize Diversity Panel
- Nested Association Mapping
- Near-Isogenic Lines

- ✓ Evaluation of selected alleles in RIL population
 ✓ Follow-up in BC lines

- ✓ Cross validate associations

- ✓ Test Candidate Genes
- ✓ Race-testing
- ✓ Microscopic phenotypes
- ✓ Fine mapping
- ✓ Map based cloning

- ✓ QTL characterization / confirmation
- ✓ 3rd season for NLB
- ✓ 2nd & 3rd seasons for GLS
- ✓ Test SNP associations

- ✓ Sequencing candidate genes
- ✓ Test for association
Thank you

Rebecca Nelson Lab
The Generation Challenge Program
The McKnight Foundation
Cornell University

Peter Balint-Kurti Lab
The Generation Challenge Program
USDA-ARS
North Carolina Corn Growers

Erik L. Stromberg Lab

The Maize Diversity Project
NSF (DBI-0321467: Molecular and Functional Diversity in the Maize Genome)
USDA-ARS
Dissection of a QRL for multiple diseases

Allele effects for QRL in bin 6.05: A region conferring resistance to multiple pathogens

Northern Leaf Blight

Common Rust

Anthracnose Stalk Rot

No effect on SLB severity

RILs: CML52/B73 Population (S5 inbred lines)

NILs: CML52/B73 S6 lines derived from HIF (heterozygous inbred family)

NIL development, evaluation – C.Chung; RIL evaluation - J.Poland;
Trypan blue staining

- Targeted stages: penetration, initial intracellular hyphal growth
- Microscopic parameter: infection efficiency

Successful infection
Infection efficiency of *E. turcicum*

Maize genotype

![Bar graph showing infection efficiency of *E. turcicum* across different maize genotypes and time points (2 dpi, 4 dpi, 7 dpi).]
Recurrent Selection and Selection Mapping

Recurrent Selection: Improving the mean performance of a population through iterative cycles of selection by

1) Identifying the superior individuals/families
2) Intercrossing superior individuals to form the next generation
Recurrent Selection Population:

Significant improvement for NLB resistance

mean AUDPC decreased by an average of 17% cycle\(^{-1}\)

CIMMYT; Ceballos et al., 1991 Crop Sci 31: 964-971
MDR in recurrent selection population

- Significant improvement for unselected diseases (SLB and GLS)

- Correlated response = genetic correlation = MDR

evaluated at NCSU 2007
Northern Leaf Blight

Disease Severity

P < 0.0001***

RILs
NILs

B73
CML52

qEt6.05_{B73}
qEt6.05_{CML52}
Anthracnose Stalk Rot

ASR

- B73
- CML52

P = 0.0001***

RILs NILs

Stalk Rot Severity

$qE6.05_{B73}$ $qE6.05_{CML52}$
Stewart’s wilt

Resistance to Stewart's wilt in CML52 NILs differing for bin 6.05

Allele(s) at bin 6.05

P < 0.0001***
Common Rust

Rust

$qET6.05$ – Multiple disease resistance effect

- NLB
- ASR
- Stewart’s wilt
- Common rust (?)
Nelson Lab Activities

- Test effect of selection on candidate genes
- Nested Association Mapping
- Selection Mapping
- Maize Diversity Panel
- Survey allele series
- Fine-mapping QTL
- Near-Isogenic Lines
- Near-Isogenic Lines

Phenotyping Power
sqrtAUDPC
sqrtAUDPC